
Towards Meta-Design for E-Business:
Experiences & Challenges

Claudio Muscogiuri, Claudia Niederée, Matthias Hemmje, Michael Fuchs

FhG - IPSI
D-64293 Darmstadt, Germany

[muscogiuri, niederée, hemmje, fuchs]@ipsi.fhg.de

Abstract

One way to address the challenge of application evolution management in the highly competitive and quickly changing area
of e-business is user empowerment through meta-design support: By integrating user-friendly and, task-oriented tools for
Web application design and evolution into the Web application itself, users are empowered to act as application co-
designers and to directly control the creation and the evolution of the Web application.

The development and evolution of Web applications requires a coupling of entities from at least two different domains: 1)
the Web application development domain 2) the application domain, which includes business objects, relationships and
business processes of the application domain under consideration.

A systematic approach to a flexible coupling of the two domains and their entities is based on the explicit modeling of the
different domains. In a second step, a mapping from objects of the Web application user interface to business objects or
business process subtasks of the application domain has to be enabled. Therefore, a third model is needed that
systematically specifies the process of mapping between the two domains. This user-centered approach to application
system evolution has been evaluated in first trials of the FAIRWIS project implementing an e-business solution with user
empowerment for the trade fair business. Exploiting heuristics from the Web application design as well as from the
application domain task-oriented authoring tools for Web application components combined with business process subtask
packages form a powerful and comfortable domain oriented design environment for user empowerment in the FAIRWIS
system.

Evaluation of the FAIRWIS system by different fair organizers showed significant viability and users’ acceptance of the
approach, but also showed up challenges for the next generation of such user-oriented design empowerment support.

 2

1. Introduction
In order to support modern business companies to take part
in strong competition in a rapidly developing global
market, a new generation of software systems have been
developed over the last few years. Such systems are
referred as e-business solutions. Technologically, they can
be classified as Web applications. Developing a Web
application for migrating a traditional business process into
a new e-business process poses the main challenge of how
the information, communication, and knowledge
management functionalities of such a Web application
should be designed and efficiently implemented.

Due to the particularly dynamic global market in which the
e-business solution is positioned, the requirements toward
the system change as frequently as the market’s tastes and
trends do.

It is our goal to investigate how far this constant Web
application adaptation task can be shifted from a
programming task, for which a software expert is
necessary, to a design task, which can be performed by a
so-called power user [1] of the respective application
domain. We believe, that a wide range of evolutionary
changes can be supported in the Web application itself by
providing adaptation support mechanisms, avoiding in this
way time-consuming software re-implementation cycles
and the associated communication overhead.

For this purpose Web application meta-design [2]) is
required, i.e., Web applications have to provide integrated
support for participating in their own design process. To
achieve this goal, powerful Web application authoring
support is necessary. It empowers special users of the Web
application, the power users, not only to use the application
but also to adapt it to changing requirements. The design of
a well-founded Web application authoring support has to
be based on a clear conceptual understanding of the
supported evolution process including the evolution
process of the underlying domains.

In the focus of our approach there are, thus, conceptual
models for the involved domains. In addition to the
application domain model capturing the typical entities,
relationships and processes of the application domain we
also need a model of the domain of Web application design
construction. A third model is needed to express the
mapping relationship between entities from the first two
models that have to be established in Web application
development for a specific domain.

In FAIRWIS, an R&D project founded by the European
Union currently under development, we are applying our
meta-design approach by providing an integrated Web-

based advanced information and communication system
for supporting the trade fair business sector. During the
FAIRWIS project and related projects we investigated

- the exploitation of heuristics in the involved
domains to provide high-level, best practise
packages for frequent domain-specific sub-tasks
and

- the role of domain modelling for system evolution
support

In the current phase of the iterative software development
process, the FAIRWIS project platform already includes
Web application authoring support based on the results of
the aforementioned investigations. In fact, within the
context of the FAIRWIS project, trade fair organizer
enterprises are considered as communities of designers in a
particular application domain. The computational
environment hosting the Web application that supports the
on-line trade fair processes has been enriched by an ad-hoc
authoring environment in which the fairs organizer’s
stakeholders can participate in the activities of defining
and evolving the Web application, as they need it for
supporting their business-process with respect to

- basic user interface layout and navigation support

- coupling of user interface and business objects

- infrastructure service support

- application domain specific support packages

The rest of this paper is structured as follows: Our
approach to Web application meta-design and user
empowerment is presented in section 2. The support for
user empowerment in the FAIRWIS is described in section
3. An overview of related work is given in section 4. Since
this is ongoing research, section 5 summarizes the lessons
we learned from this and similar projects concerning Web
application evolution and discusses our plans for the next
steps on the way to improved meta-design for e-business
Web applications..

2. Dynamic Evolution Support through
User Empowerment

2.1. Iterative Application Evolution
The development of a larger software system is a complex
process that in general requires several iterations until the
produced system fulfils the requirements of the intended
user community [9]. This is especially true for Web
applications imp lementing e-business solutions, for which
the requirement analysis and design phase necessitate the

 3

involvement of a variety of stakeholders [3], including, but
not necessarily limited to marketing people, consultants,
creative designers, customer supports, vendors, lawyers,
business executives, system designers and developers.

Even when the developed system has reached a state upon
which all stakeholders agree and is finally deployed, the
system change process does not stop. Business process
redesign due to new end user requirements, user feedback,
new legal regulations, competitive reasons, etc. may
require an adaptation of the associated Web application to
the new process.

Designing and implementing a new system also contributes
to the creation of a shared understanding between all the
stakeholders. Once the users find themselves working
together using the same system and exploiting this shared
understanding, this can lead to ''new insights, new ideas,
and new artefacts'' [2]. This provides an important
additional source for system evolution requests.

System evolution, thus, is an integral part of the
operational phase of a Web application's lifecycle and has
to be supported efficiently. The traditional software
development cycle delays the integration of change
requirements coming up in the operational phase to the
next software release. This delay can be unacceptable in
the highly competitive market of e-business.

As an alternative or complement to this software evolution
approach the user can be empowered to implement at least
certain classes of changes by himself.

2.2. User Empowerment

If we want to convert at least part of the users from normal
users into power users that act as co-
designers and developers in system
customisation and evolution, adequate
system support is required for this task.
Integrating mechanisms for system
evolution steered by the user into the
system leads to the concept of meta-design
[2]: User empowerment services have to be
defined that are themselves intended for
modifying the design of the system.

For real user empowerment we are
interested in system modification that goes
beyond user interface customisation: The
user shall be able to manipulate system
functionality adapting it to the underlying
business process. Such modifications are
normally reserved to skilled software
developers. Since the power users are
members of the application domain, we
may not assume programming skills.
Tackling this virtual conflict user

empowerment is based on the following meta-design
concepts in our approach:

- domain modelling and knowledge management for
all involved domains

- the exploitation of domain heuristics

The impact of domain heuristics and domain modelling for
a user empowerment that is flexible, but also task-oriented
and well-rooted in the application domain is discussed in
this section. The use of task specific design support [1]
instead of general programming languages provides user-
friendly interfaces for the development task.

It has to be noted here, that we do not expect the power
user to develop an entire e-business solution from scratch
on his own. The focus is on small incremental changes and
adaptations in an already operational system

2.2.1. Domain Modeling and System Evolution

The development and evolution of Web applications
require a coupling of entities from at least two different
domains:

- the domain of Web application development,

- the application domain, which includes business
objects, relationships and business processes of the
application domain under consideration.

A systematic approach to a flexible coupling is the
modelling of the different domains. In a second step, a
model that systematically specifies the process of mapping
between from objects of the Web application user interface
to business objects or business process subtasks of the

Application
Domain Model

Web
Application
UI model

Web UI
Presentation model

Web UI
Dialogue/Navigation model

Mapping
Mechanism

Design Model

Figure 1: a model that systematically specifies the process of mapping between from
objects of the Web application user interface to business objects or business process
subtasks of the application domain has to be enabled.

 4

application domain has to be enabled (see Figure 1).

In addition to enabling the discussed forms of user
empowerment, modelling of the application domain and
making it available to the users (power users as well as
normal users) als o contributes improved communication
between all community members and a deeper domain
understanding.

2.2.2. The Role of Domain Heuristics

Processes in apparently all domains are driven by
heuristics and best practices, which are based on individual
and community experiences with the same or similar
processes. These heuristics can be made explicit, as in the
case of published guidelines, or implicit, as in the case of
individual experience.

In the case of Web application meta-design heuristics from
different domains are available. In the domain of Web
interface design heuristics are collected in guidelines for
''good'' Web page design. In e-business application
domains heuristics for the efficient design of the central
business processes are available. In the trade fair domain,
for example, processes like booking of stand services are
well-understood subtasks of organizing a fair.

In our approach we plan to exploit heuristics from the
involved domains to enrich the power user’s work
environment in different ways:

- Customisable subtask packages, that implement
heuristics like best practises, frequently used
patterns, and standardized business process steps
provide high level building blocks for Web
application construction and evolution.

- Consulting, wizards and critiquing systems can be
improved by evaluating construction heuristics and
proposing adequate process steps and design
decisions to the user.

- Processing and structuring templates like
navigation menus that are based on usage heuristics
are offered as frameworks that can be customized
and instantiated.

3. The FAIRWIS Experience

3.1. The FAIRWIS Project

FAIRWIS is an EU funded project that aims at offering on-
line innovative services to support business processes of
both real and virtual trade fairs. An application design
environment has been integrated into the FAIRWIS system
to provide support for the user empowerment approach
outlined in the previous section enabling trade fair
organizers to adapt and evolve their own systems.

This publication focuses on the meta-design components
for user empowerment in the FAIRWIS system and the
experience gained with these components in an evaluation
phase. A more detailed description of the FAIRWIS
project can be found in [6].

3.2. The FAIRWIS Application Design
Environment

FAIRWIS system’s integrated design environment consists

- of a set of authoring tools for the design and
evolution of the components of an e-business Web
application with a multilingual user interface and

- of a set of subtask packages for typical business
processes in the trade fair context.

The authoring tools are called managers and are intended
for system developers as well as for power users.

The managers can be organized in four groups:

- Managers for basic user interface layout and
navigation support,

- Managers for the coupling of user interface
elements with business object,

- Managers for infrastructure service support, and

- Managers for application domain specific support
packages.

3.2.1. Basic User Interface Layout and Navigation
Support

Referring to the model in Figure 1 introduced in section
2.2.1, this set of authoring tools implements the
fundamental Web UI Navigation model [7], [8] and part of
the Web UI Presentation model [7], [8]:

Menu Manager: The Menu Manager is used to create
hierarchies of navigational, multilingual menu and
sub-menu entries. For each considered language, a
separate hierarchy of menu entries can be defined.
For each menu entry entity, power users can define
its visibility to user groups, the name and type of the
Web page to which the menu entry links and other
menu entry properties like e.g. onMouse events, pre
or post menu entry text, etc.

Page Manager: The Page Manager can be used for the
creation and editing of static Web pages providing a
versioning mechanism. It supports the upload of
Web pages produced using other off-the-shelf tools
and the application of templates.

Image Manager: The Image Manager enables the
upload of images and makes them available for the
other Managers.

 5

Color Manager: Using the Color Manager, the power
users can define the basic look and feel of the Web
application. The user interface has been
conceptually structured into six main components
(e.g. header, footer, menu entities), for which layout
properties can be defined by the Color Manager.

3.2.2. Coupling of User Interface and Business Objects

Forms, as they are known from HTML pages, are an
important way of user interaction in Web applications. If
they are used as user interfaces in Web application a

coupling between components of the Web page and
business objects of the underlying application domain have
to be established.

The Form Manager enables to define a mapping between
the user interface components and application domain by
defining the structure and basic layout of dynamic Web
pages (forms) (see Figure 1). The class diagram of the
model underlying the Form Manager is given in .Figure 2.

Dynamic Web pages are pages displaying application
(database) state, enabling on-line users to execute business
workflow steps through input, confirmation and data
processing. Using the Form Manager, power users can

create the dynamic Web pages for
the Web application under
design, specifying the static and
dynamic properties of their
components (field elements,
buttons, checkboxes…). For each
component the power user can
specify:

- Element type: For each
element composing the page,
predefined templates can be
used and new ones can be
created (e.g. checkbox, check
box list, checkbox list with
default, select list, radio,
radio list, etc.). Each
template defines both static
layout properties from the
Presentation model (see
Figure 1) and specific
business logic that
implements a coupling
mechanism with application
specific code. The element
type is an instance of the
Element class (see Figure 2)

- Field content: the data
objects to which a Web
design element is related, and
on which it will carry out the
business logic defined for the
assigned “element type”. For
example, given the element
type is a select list for an
input field, the element
content property will be a list
of settings the power user
specifies for defining the
available default values in the
list (e.g. list of countries),
and how the input value will
be used in the business logic

FieldsList
form_id
field_id

ElementScr
iptsList

FieldScriptsList

PageBodyTemplate
name
textcolor
linkcolor
background

Picture

PageTitle
CustomWebpage
name
data

PageTitleDefinition
data PageTextContentDefinition

content type
data

Message
Script

Language

Image

MessageScri
ptDefinition

Element

type
maintype
desttable
destfield
sourcetable
sourcefield
defaulttable
defaultfield
selected_id
defaultkey
defaultparam
comment

Script
name
description
scriptdata
func_call

FieldGroup

FieldContent
name
sourcetable
sourcefield
desttable
selected_id
defaulttable
dafaultkey
defaultparam
link
visible
image_id
start_index
end_index
comment
types
use_text

TextElement

PasswordElement

HiddenElement

ButtonElement

CheckBox

RadioElement

SubmitElement

PageDocument

SQLMethod

FormFieldDef
inition

form_id
tablename
column
parameter

Linkage

FormPara
meters

Field
name
element_id
style_id
cont_id
visible_input
visible_confirm
mandatory
input_size
input_rows
uconst
comment

Form

name
formtype
bodytemplate
delete_able
parent_id

Figure 2: The model for the Form Manager

 6

(e.g. set the city value in the user’s personal data). The
field content is an instance of the FieldContent class
(see Figure 2)

- Related “script” object: a set of script objects is
available, implementing additional business logics.
Some examples, among others are: print, submit,
check mandatory fields before submitting, change user
group after a business transaction, dynamic link, print
special content areas. The related script object is an
instance of the Script class (see Figure 2)

3.2.3. Infrastructure service support

User Manager, Communication Manager (Mail Manager):
Power users can manage user data and all related data
object from the Application Domain model (see Figure 1).
Power users can query the business data, can create and
manage predefined dynamic queries. A user profile editor
is integrated in this Manager, in which power users can
manage and edit user data (e.g. name, age, address) and
related business objects’ data, such as stands data, account
data (login, password), and usergroup in the users
hierarchy. The Mailing lists can be set up by means of
dynamic queries on the user database, segmenting parts
according to their profiles and interests. Mails can be
delivered using regular e-mail. Alternatively, messages can
be displayed individually to on-line users registered to the
Web Application.

3.2.4. Application domain specific support packages

The booking of service products and the management of
trade fair events have been identified as important business
process subtasks in the trade fair domain during the
FAIRWIS project. Therefore, customisable support
packages have been implemented for these subtasks.

Booking Manager: Power users can use the Booking
Manager to set the peculiar characteristics (such as
description, fees, availability, and currencies) for each
family of services offered and that on-line users can book
on-line and list in the shopping cart pages. For each family
of services a corresponding Complex Field is created.

The Complex Fields are a special kind of dynamic page
elements. Such fields realize the part of relationship
between special entities in the fair domain (the services)
and Web page elements providing the right interface for
the on-line booking of services. The behavior of the
complex field, implementing the business logic, is
automatically created in an associated FieldScript object
(instance of the Field class in Figure 2).

The services booking Web page for a family of services is
created, like the other Web pages, by power users using the
Form Manager.

Program Manager: Within this Manager, power users
can design dynamic catalogue pages, as in the case of the
services booking Web pages, by editing the properties of
ad hoc multidimensional hierarchy of business object, like
exhibitors catalogue information, and event information
(e.g. conferences and workshops). Visitors can examine
the events on-line and add them to their personal program
in their personal area, like the exhibitors add booked
services to the shopping cart.

4. Related Works
An interesting form of task-specific design support are
DODEs (Domain-oriented Design Environments) [4].
Essentially, a domain oriented design environment
includes the following components

a) a construction kit providing a palette of domain
building blocks

b) an argumentative support containing issues,
answer, and arguments about the design
domain and the design rationale

c) a catalogue consisting of a collection of pre-
stored designs

d) a specification component supporting the
interaction among stakeholder

e) a simulation component (carrying out “what-if”
games)

Typically, domain oriented design environments provide
tools for creating design representations, information
repositories for storing domain information knowledge,
and knowledge based mechanisms that link the design
representations and the stored domain information.

An extended analysis of the designers’ activities and their
tools has been performed also in [5]. Such analysis
confirms that design communities gradually construct their
domain by defining domain objects, creating and evolving
multiple representation of the domain objects, and
establishing complex relationships between objects
through their representation (domain construction process);
thus, it confirms the necessity to support domain modelling
support in design environments.

It is our aim to build a design environment that is not
restricted to one application domain but usable for an
entire class of systems, namely e-business solutions with
community support in different application domain like
trade fair business, e-learning, etc. For this purpose, we
plan to generalize the DODE approach by factoring
domain-specific knowledge into a domain model and
developing a meta-model for the interaction of the domain
model with the components of the design environment.

 7

As explained in the previous sections of the paper, all our
efforts are in the direction of investigating on how to
support the user in modelling objects in different domain
and in defining the mapping properties among objects from
the different domains in a declarative way. The validity of
such approach is confirmed by analysing best practice in
the UI designer community [7]. For instance, following the
so-called Model Based Interface Development paradigm
[8]; model-based UI tools support the design and the
development of Uis in a professional and systematic way
allowing designers/developers to specify UI design by a)
managing entities and relationship in the following
domains: Domain model, User model, Presentation model,
Dialog model, Task model, and b) setting mapping
properties among entities from the different domains. The
study of such design environments confirm that the model
based paradigm is a good fit for Internet-based UI that rely
on the use of modular components

5. Conclusion and Future Work

5.1. Lessons learned from FAIRWIS
The FAIRWIS system is already productive in a public
trial site, and real trade fair organisers are using the design
environment illustrated in section 3 to set up Web
applications supporting events they organise.

As the project partners expected system acceptance is high,
because of the deep involvement of trade fair organizers
and associations into the process of the requirement
analysis and design. In addition, trial site evaluation
showed encouraging synergies between the stakeholders.
Members of the stakeholder communities that have
developed expertise in specific off-the-shelf tools (e.g.
CAD people, marketing people) flexibly bring their
expertise and working results into the distributed common
design environment, sharing in this way design products
and knowledge. At the same time, the FAIRWIS prototype
is permitting domain professionals to easily acquire
contextualized IT knowledge.

The evaluation of the FAIRWIS system also pointed out
some shortcomings of the prototype functionality. Driven
by variances in the underlying trade fair business process
and inspired by the exp erience with the FAIRWIS system
modifications of the domain model underlying the system
like the insertion of new user types were desired by some
of the evaluating trade fair organizers. Making changes to
tools and the underlying domain models requires technical
knowledge and actual programming efforts. This limitation
still ends up in situation where even power users are in
need of collaboration with system developers to assist
them in redesign activities.

The design and evolution of a Web application is a
complex project involving different stakeholders.

Therefore, the need for tools supporting the management
of the Web application construction workflow has been
identified as a further system requirement during the
evaluation.

In summary the claim of Fisher [2], that system
involvement leads to “new insights, new ideas, and new
artefacts” is confirmed by the evaluation results. Becoming
acquainted with the system, the power users discover new
evolution ideas that can be covered only by a new
generation of more flexible authoring tools.

5.2. User Empowerment - Next Generation
As confirmed from the users’ evaluation in FAIRWIS,
explicit domain modelling and domain construction
support is needed by the user in order to allow them to able
to create and change entities and relationships in the
domain (domain construction frameworks [5]). The
currently implemented mapping mechanism between
Application Domain model and Web Application UI model
(see Figure 1) allows the generation of the UI element by
matching data object with element types as explained in
section 3.2.2. However, the users don’t think in term data
model but in term of business object [10]; so an explicit
support for the application domain modelling could allow
user to effectively express the element that must be
displayed in the interface in term of domain objects.

Introducing a specific support for the domain modelling
implies the introduction of a Domain Adaptor Layer to
map business object at the UI level with data object on the
business layer [10]. This additional layer would also help
to more effectively integrate information sources from the
users’ back office system.

Besides, for a large Web application design practice,
typically the designers produce one navigation map per
actor, one for each use case identifying pages to which the
users will navigate. As the pages are identified, the
designers then describe the information the pages handle
[3]. Analogously, the Manager tools in the FAIRWIS
design environment should be extended allowing power
users to define the business process workflow, the business
objects affected in each step of the business workflow, one
navigation map per user group for each step in the business
process, identifying the pages to which the user group will
navigate while performing the step in the business
workflow.

6. Acknowledgements
The support of European Commission through grant
FAIRWIS IST-1999-12641 is acknowledged. We are also
grateful to the work carried out by the other partners of the
FAIRWIS project.

7. References
[1] Nardi B.A., A Small Matter of Programming, MIT Press, Cambridge, Mass., 1993

[2] Fischer G., Social Creativity, Symmetry of Ignorance and Meta-Design, Knowledge-Based Systems J., vol. 13, nos.
7-8, Dec. 2000, pp. 527-537

[3] A rational Software and Context Integration white paper, Building Web solution with the Rational Unified
Process: Unifying the Creative Design Process and the Software Engineering process, http://www.rational.com

[4] Fischer, G. (1994), Domain-Oriented Design Environments, Automated Software Engineering, 1(2), 1994 pp.
177-203

[5] Sumner T. R. (1995), Designers and their tools: Computer Support for Domain Construction, University of
Colorado at Boulder, Ph.D. Dissertation, Dept. of Computer Science, 1995

[6] Muscogiuri C., Jaeschke G., Paradiso A., Hemmje M. (2002), FAIRWIS: An Integrated System offering Trade Fair
Web-based Information Services – A R&D Case Study, in: Proceedings of the 35th Hawaii International
Conference on System Sciences, Hawaii, Big Island, IEEE Press

[7] Pinheiro da Silva P. (2000), User Interface Declarative Models and Development Environments: A Survey
Proceedings of DSV-IS2000

[8] Puerta A. R.. (1997), A Model-based Interface Development Environment, IEEE Software, pages 40--47,
July/August 1997

[9] Kruchten P, The Rational Unified Process: An Introduction, The Addison-Wesley Object Technology Series, 2000

[10] Anderson, D.J., TUPIS2000 – Notes on Interaction spaces from UML2000, Conference TUPIS Notes Report:
uidesign.net, http://www.uidesign.net/2000/conference/TUPISreport.html

